
Database Similarity Searching

Irit Orr
Shifra Ben-Dor

Bioinformatics Lecture 6 2022

PAIRWISE ALIGNMENT

DATABASE SEARCHING

MULTIPLE ALIGNMENT

MULTIPLE ALIGNMENT

Phylogenetic
Analysis

Homology
Modeling

Advanced Database Searches,
Patterns, Motifs, Promoters

Why search databases?

• To find out if a new DNA sequence shares
similarities with sequences already deposited in
the databanks.

• To find proteins homologous to a putative coding
ORF.

• To find similar non-coding DNA stretches in the
database, (for example: repeat elements,
regulatory sequences).

• To locate false priming sites for a set of PCR
oligonucleotides.

What databases are available?
• DNA (nucleotide sequences):

The big databases: Genbank, Embl, DDBJ and their
weekly updates. These databases exchange
information routinely.

• Genomic databases, for example: Human, Mouse,
Yeast...

• Special databases:

SRA (Short read archive), TSA (Transcript sequence
assembly), EPD (eukaryotic promoter database), ESTs
(expressed sequence tags), REPBASE (repetitive
sequence database) and many others.

What databases are available?
• Protein (amino acid sequences):

The major database is:

Uniprot/Swiss-Prot (high level of annotation)

Translated databases like:

Uniprot/TREMBL (translated EMBL)

GenPept (translation of coding regions in GenBank)

• Special databases like:

PDB (sequences which have 3D structures)

What is a homologous sequence?

• A homologous sequence, in molecular biology,
means that the sequence is similar to another
sequence. The similarity is derived from
common ancestry.

• Homologous proteins generally are are similar
in their folding or their structure.

DNA vs. Protein searches
• DNA is composed of 4 characters: A,C,G,T

For any position, there is 25% chance that the
bases of two aligned sequences would be
identical, even if they are unrelated.

• Protein sequence is composed of 20 characters
(aa). The sensitivity of the comparison is
improved. It is accepted that convergence of
proteins is rare, meaning that high similarity
between two proteins almost always means
homology.

DNA vs. Protein searches
• What should we use to search for similarity,

nucleotide or protein sequences?
• If we have a nucleotide sequence, should we

search only DNA databases or should we
translate it to protein and search protein
databases?

• Note that by translating DNA into protein, we’ll
presumably lose information, since the genetic
code is degenerate, meaning that two or more
codons translate to the same amino acid.

Peptide (1) MET LYS PRO HIS
DNA (1) ATG AAA CCT CAT

(2) ATG AAG CCT CAT
(3) ATG AAA CCC CAT
(4) ATG AAG CCC CAT
(5) ATG AAA CCA CAT
(6) ATG AAG CCA CAT
(7) ATG AAA CCG CAT
(8) ATG AAG CCG CAT
(9) ATG AAA CCT CAC
(10) ATG AAG CCT CAC
(11) ATG AAA CCC CAC
(12) ATG AAG CCC CAC
(13) ATG AAA CCA CAC
(14) ATG AAG CCA CAC
(15) ATG AAA CCG CAC
(16) ATG AAG CCG CAC

Codon
Wobble

DNA vs. Protein searches

• What about very different DNA sequences
that code for similar protein sequences?
We certainly do not want to miss those.

• What about the size of the databases?
DNA databases are huge in size compared to
Protein databases.
• Huge databases = many sequences = many

random hits.

Input sequences
(Bait, Query)

Databases to search
(Subject)

DATABASES AND INPUT SEQUENCES

*Does not apply when searching for non translated sequences

*
DNA DNA

Protein Protein

DNA vs. Protein searches

– When comparing DNA sequences, we get
significantly more random matches than we get with
proteins (due to differences in alphabet).

– The DNA databases are much larger, and grow faster
than Protein databases. Bigger databases mean
more random hits!

– For DNA we usually use identity matrices, for
protein more sensitive matrices like PAM and
BLOSUM, which allow for better search results.

– Evolutionarily, protein sequences tend to diverge
less than the DNA encoding them.

DNA vs. Protein searches

To sum it up:

We should use proteins for database
similarity searches when possible
(depending, of course, on the
biological question, and especially
for more distant sequences).

Basic principles of db searching

• When searching a database, we take a query
sequence and use an algorithm (program) for
the search.

• Every pair compared yields a score.

• Larger scores usually indicate a higher degree
of similarity.

• A typical db search will yield a huge number of
scores to be analyzed.

Pairwise Alignment

Alignments between 2 sequences:
• Can start and end anywhere in each sequence
• Don’t have to match in all bases
• May include gaps in either of the sequences

ATTGTCAAAGACTTGAGCTGATGCAT
|||| ||| ||||

GGCAGACATGA.CTGACAAGGGTATCG

Aligning 2 Sequences

ATTGCAGTGATCG
ATTGCGTCGATCG

Solution 1: Solution 2:

ATTGCAGTGATCG ATTGCAGT-GATCG
||||| ||||| ||||| || |||||
ATTGCGTCGATCG ATTGC-GTCGATCG

Aligning 2 Sequences

What is a better solution?

Solution 1: Solution 2:

ATTGCAGTGATCG ATTGCAGT-GATCG
||||| ||||| ||||| || |||||
ATTGCGTCGATCG ATTGC-GTCGATCG

?

3 mismatches + 10 matches 2 gaps + 12 matches

Scoring Pairwise Alignments

Scores in an alignment are given to:
• eq_score - the score for a match
• dif_score - the score for a mismatch
• gap_open - the penalty score for opening a gap
• gap_extend - the penalty score for extension of

each gap by 1 character (including the first one!)

Optimal alignment using scores

What is a �Better� Alignment?

ATTGCAGTGATCG
||||| |||||
ATTGCGTCGATCG
ATTGCAGT-GATCG
||||| || |||||
ATTGC-GTCGATCG

3 mismatches

+ 10 matches =

3(-4) + (10 x 3) = 18

2 gaps + 12 matches =
2(-12 - 4) + (12 x 3) = 4

Pairwise Comparison of Proteins
POTYYILT
| || |:|
PRTYDIIT

Matches and conservative substitutions receive
good (positive) scores

Non-conservative substitutions and gaps receive
bad (negative) scores

% identity of the alignment = matches
% similarity is defined by the amount of positive

scores out of the alignment (matches +
substitutions).

Basic principles of db searching

• Using pairwise comparison, each database
search normally yields 2 groups of scores:
genuinely related and genuinely unrelated
sequences, with some overlap between them.

• A good search method should completely
separate between the 2 score groups.

• In practice no search method succeeds in total
separation.

Ideal No GoodBorderline

Random

Related
Buried

Change Parameters
(matrix, penalties)

Specificity and sensitivity
Definitions
• Sensitivity: the ability to detect "true positive"

matches. The most sensitive search finds all
true matches, but might have lots of false
positives

• Specificity: the ability to reject "false positive"
matches. The most specific search will return
only true matches, but might have lots of false
negatives.

Two types of alignment:

• Global alignment

• Local alignment

Global
Alignment

Local
Alignment

Seq A
Seq B

Main algorithms for database searching

• FastA : Is theoretically better for nucleotides
than BLAST (statistics are more rigorous)

• BLAST: Better for proteins than for nucleotides

• Blat: Optimized for fast searches on the genome
level

• Smith-Waterman: More sensitive than FastA or
BLAST. Good for distantly related sequences.

The Smith-Waterman Tools
• Smith-Waterman searching method is a

dynamic programming method.
• Dynamic programming techniques build a

solution to a problem by solving sub-problems.
• The Smith-Waterman method uses full

pairwise comparison of the query sequence to
each sequence in database.

• Then, some statistics are calculated on the
search results.

The Smith-Waterman matrix

K # # # # # # # # #
L # # # # # # # # #
H # # # # # # # # #
G # # # # # # # # #
R # # # # # # # # #
D # # # # # # # # #
N # # # # # # # # #
A # # # # # # # # #

A N Y D R G L K M

query

da
ta

ba
se

Score calculation requires value in each cell

“All fast alignment programs that I am aware of
break the alignment problem into two parts.
Initially in a “search stage,” the program detects
regions of the two sequences which are likely to be
homologous. The program then in an “alignment
stage” examines these regions in more detail and
produces alignments for the regions which are
indeed homologous according to some criteria. The
goal of the search stage is to detect the vast
majority of homologous regions while reducing the
amount of sequence that is passed to the
alignment stage.”

Kent, W.J. 2002. Genome Research 4: 656-664.

The FastA software package

• FastA uses the method of Pearson and Lipman
(PNAS 85: 2444-2448, 1988).

• FastA is a family of programs, which include:

– FastA, TFastA, Ssearch, etc…

• FastA is a GLOBAL alignment algorithm

How does the FastA program work?

FastA locates regions of the query sequence and
the search set sequence that have high densities of
exact word matches.

Query Sequence

Da
ta

ba
se

 S
eq

ue
nc

e

The ten highest-scoring regions are saved and
rescored using a scoring matrix. The score of the
highest scoring initial region is saved as the init1
score.

Query Sequence

Da
ta

ba
se

 S
eq

ue
nc

e

Next: FastA determines if any of the initial regions from
different diagonals may be joined together to form an
approximate alignment with gaps. Only non-overlapping
regions may be joined. The score for the joined regions is
the sum of the scores of the initial regions minus a joining
penalty for each gap. The score of the highest scoring
region, at the end of this step, is saved as the initn score.

Query Sequence

Da
ta

ba
se

 S
eq

ue
nc

e

After computing the initial scores, FastA
uses dynamic programming (Smith-
Waterman algorithm) over a narrow
region of high scoring diagonals between
the query sequence and the search set
sequence, to produce an alignment with a
new score.

The alignment score is the opt score.

• Last: FastA uses a simple linear regression
against the natural log of the search set
sequence length to calculate a normalized
z-score for the sequence pair.

• Using the distribution of the z-score, the
program can estimate the number of sequences
that would be expected to produce, purely by
chance, a z-score greater than or equal to the
z-score obtained in the search. This is reported
as the E() score.

! Note:

• The program will calculate the extreme value
distribution, µ and lambda, for expected scores
distribution.

• The calculations vary with sequence length in
the dataset, their composition, and the scoring
matrix used.

• Therefore, small datasets will effect the
accuracy of the statistical calculations in FASTA.

Parameters in the FastA package

• Search speed and selectivity are controlled
with the “ktup” (wordsize) parameter.

– Tips for ktup: For proteins, the default,
ktup=2, ktup=1 is more sensitive but slower.

– For DNA, ktup=6, the default, ktup=3 or
ktup=4 give more sensitivity, ktup=1 for
oligonucleotides (length <20).

Output of FastA
The best scores are: init1 initn opt z-sc E(699079)..

EM_HUM1:HSACHRA Begin: 1 End: 1667
! Y00762 Human mRNA for muscle acetyl... 8335 8335 8335 9159.3 0
EM_HUM2:S77094 Begin: 1 End: 1667
! S77094 nicotinic acetylcholine rece... 8299 8299 8299 9119.6 0
EM_OM:BTACHRA1 Begin: 10 End: 1422
! X02509 B.Taurus mRNA for acetylchol... 6018 6244 6048 6636.8 0
EM_RO:MMACHRAM Begin: 4 End: 1634
! X03986 Mouse mRNA for muscle nicoti... 5570 5630 5881 6457.6 0
EM_RO:MMACHRAB Begin: 59 End: 1731
! M17640 Mus musculus acetylcholine r... 5552 5607 5873 6448.4 0
EM_RO:RNACRA1 Begin: 27 End: 1678
! X74832 R.norvegicus mRNA for acetyl... 5550 5713 5807 6375.8 0
EM_OV:XLACHRA Begin: 32 End: 1416
! X07067 Xenopus mRNA for muscle aety... 3309 3309 3558 3901.8 0
EM_OV:FSACHRA Begin: 243 End: 1572
! J00963 Ray (T.californica) acetylch... 3345 3345 3527 3865.4 0
EM_OV:TMACHR Begin: 120 End: 1449
! M25893 T.marmorata acetylcholine re... 3318 3318 3500 3836.4 0
EM_OV:DRU70438 Begin: 180 End: 1536
! U70438 Danio rerio muscle nicotinic... 3129 3129 3426 3753.7 0
EM_OV:XLACHRA1 Begin: 16 End: 1397

Output of FastA
y00762
EM_HUM1:HSACHRA

ID HSACHRA standard; RNA; HUM; 1667 BP.
AC Y00762;
NI g28308
DT 02-APR-1988 (Rel. 15, Created)
DT 23-MAR-1995 (Rel. 43, Last updated, Version 6)
DE Human mRNA for muscle acetylcholine receptor alpha-subunit . . .

SCORES Init1:8335 Initn:8335 Opt: 8335 z-score: 9159.3 E(): 0
100.0% identity in 1667 bp overlap

10 20 30 40 50
y00762 AAGCACAGGCCACCACTCTGCCCTGGTCCACACAAGCTCCGGTAGCCCATGGA

|||
HSACHRA AAGCACAGGCCACCACTCTGCCCTGGTCCACACAAGCTCCGGTAGCCCATGGA

10 20 30 40 50

BLAST - Basic Local Alignment Search Tool

• Blast programs use a heuristic search
algorithm. The programs use the statistical
methods of Karlin and Altschul (1990,1993).

• Blast programs were designed for fast
database searching, with minimal sacrifice of
sensitivity to distant related sequences.

• Blast is a LOCAL alignment algorithm

BLAST - Basic Local Alignment Search Tool

• BLAST programs search databases in a
special compressed format.

• To use your own private database with
blast, you need to format it in blast format.

BLAST Programs
• BLAST is actually a family of programs

– BLASTN - Nucleotide query searching a nucleotide
database.

– BLASTP - Protein query searching a protein database.

– BLASTX - Translated nucleotide query sequence (6
frames) searching a protein database.

– TBLASTN - Protein query searching a translated
nucleotide (6 frames) database.

– TBLASTX - Translated nucleotide query (6 frames)
searching a translated nucleotide (6 frames) database.

Blast method

• Blast uses a heuristic method to find the
highest scoring local alignment between the
query sequence and the search set sequence.

• The original blast algorithm did not allow gaps,
and relied on the statistics of ungapped
alignments.

• The current version of Blast allows short gaps
and has better statistics.

BLAST - Basic Local Alignment Search Tool

BLAST uses “common words” for the initial
database search.

(This is done to increase the search speed).

Steps used by Blast algorithm

• The database
is indexed and a dictionary of words with
different length is built.

• The query sequence
• Is first scanned for low-complexity regions or

repeats.
• A list of words, (of a given length), is created,

starting from position 1, then 2 until the end
of the sequence is reached.

Steps used by Blast algorithm

Step 1:
The program scans each db sequence for an
exact match to a given length word.

If a match is found, it is used to seed a
possible ungapped alignment between the 2
sequences.

Steps used by Blast algorithm

• The query sequence:

• Using a scoring matrix (for example,

BLOSUM62), the short words are evaluated

for exact match with the words of the

databases sequences.

• The object of the evaluation is to find the scores

for aligning the query-word with any other word

(of given length) from the database.

• Score calculations are done and saved.

Steps used by Blast algorithm

• The query sequence:

• A cutoff threshold score, T, is selected, in
order to select the most significant matches.

• For example: if T = 13, only words that score
above 13 are kept.

• This evaluation procedure is repeated for
each word of given length in the sequence
dictionary.

Steps used by Blast algorithm

• The query sequence:

• The remaining high-scoring words from the
whole procedure are organized into an
efficient search tree, in order to compare
them rapidly to all database sequences.

Steps used by Blast algorithm

Step 2:
(a) In the original method, the alignment was
extended at both sides of the hit, as long as
the score of the alignment increased. The
extension stopped when the score began to
fall.
This sequence segment of matches (hits) was
called HSP (High Scoring segment-Pair).

BLAST - Local alignment

#
#

#
#

#
#

#
#

query

da
ta

ba
se

Extending the best diagonals

Steps used by Blast algorithm

Step 2:
(b) In the later version of BLAST the method
changed. The change is in a lower T value,
resulting in a longer words list.

The program looks for the word match first, then
tries to locate several short words on the same
diagonal, and then extends the alignment on both
sides of the hits on the same diagonal, allowing
short gaps.

The newly found diagonals are scored (sum of the
scores of the individual matches).

Extension of HSPs allowing
short gaps

#
#
#

#
#

#
#
#

#

query

da
ta

ba
se

Steps used by Blast algorithm

Step 3:
The HSPs of the entire database are
compared to a cutoff score S, and when
greater then S, are listed.

Step 4:
Statistical significance calculations are done for

each HSP score.

E-Score

• The E-score is the Expect value: How many
times do I expect to see an alignment with a bit
score of X in a database of size Y.

• It is not a measure of similarity, it only gives an
approximation of how relevant the results are

• It is dependent on the database SIZE, so
different databases will give different E-scores
for the same alignment

• Statistically significant E-scores: under 0.05

Steps used by Blast algorithm

Step 5:
Alignment of the segments are done, the

alignment score is obtained, and the E() value
for this score is calculated.

Last step:
If the calculated E() for the database sequence

meets the user given E() for the program, this
score is reported.

Blast output
• The list of hits
• Database accession codes, name, description,

general information about the hit
• Score in bits, the alignment score expressed in

units of information. Usually 30 bits are
required for significance.

• Expectation value E()
It is important to keep in mind that the E()
value does not represent a measure of
similarity between the two sequences!

Blast output
• The information for each hit
• A header including hit name, description, length
• The same for all additional entries removed due

to redundancy
• Composite expectation value
• Each hit may contain several HSPs
• score and expectation value
– how many identical residues
– how many residues contributing positively to

the score
• The local alignment itself

Statistical evaluation of results

• When the program finds a similarity between
your query sequence and a database sequence
it is not always clear how significant this
similarity really is.

• To evaluate if this similarity is statistically
significance, you should run a pairwise
comparison, preferably with the randomization
option

Other issues

• Low Complexity Sequence

• Compositional Bias

• Repeat regions

• Database size

Low Complexity Regions

• Regions of low complexity (in both DNA and
protein) will give hits that are significant but
not necessarily biologically interesting (a long
stretch of A for example)

• To deal with that we can filter the query
sequence, either for the initial word match, or
for the full alignment process

Compositional Bias
• Some sequences have compositional bias -

either because the underlying genome is G/C
or A/T rich (causes a tendency towards
certain amino acids over others), or have
regions that are particularly rich in one amino
acid (Proline, Histidine, Glutamine)

• The traditional scoring matrices are built on
the assumption that the amino acid
distribution is normal, and won’t score these
matches properly

Compositional Bias

• A new scoring method has been added for
BlastP, and is now the default: Conditional
Compositional Score Matrix Adjustment

• This allows the program to “fix” the matrix
based on parameters in the pair of sequences
being compared.

• This will give more true hits, and less hits that
are significant, but not biologically interesting

Repeat Sequences

• In genomic DNA, there are repetitive
elements that will skew any search results
(for example Alu repeats in human)

• A filter can be used to ‘clean’ up the query
sequence, and mask any known repeats
before the search is performed.

Database size

• The e-score is dependent on database size.

• If we change the database, we change the
score

• This is true for whole databases (nr vs.
swissprot) as well as database segments

Database segments

• We can subdivide the database to help us find
more relevant results

• We can limit it by a specific species, by groups
of species (plants, vertebrates, mammals,
viruses, bacteria…)

• We can also limit (at NCBI) by Entrez terms,
including NOT

Blat – Blast Like Alignment Tool

• Blat is a shortcut on Blast, optimized for fast
searching of sequences against a genome
database

• Kent, W.J. 2002. BLAT -- The BLAST-Like
Alignment Tool. Genome Research 4: 656-664.

Blat – Blast Like Alignment Tool

• Blat looks for two perfect matches of a given length

(default K of 11 for DNA), constrained to the same

diagonal and are near each other.

• For protein, it uses three perfect 4-mers (on-line) or one

perfect 5-mer (stand alone)

• It uses overlapping K-mers of the query, and non-

overlapping K-mers of the database (minus repeats)

• It finds initial hits, and groups them together as long as

they are close to each other

Blat – Blast Like Alignment Tool

• It then goes on to do the alignment, refining
the original hits

• As it was optimized for mRNA to genome
alignments, it knows to allow large gaps, and
looks for cannonical splice junctions (GT/AG) in
deciding where to place the gap

• It works on genomic alignments as well, but
only when the sequences are closely related
(more than 90% identical)

Conclusions

Local alignments:
• Can start and end anywhere within the

sequences
• Therefore the location of the highest score (S)

can be at any cell within the matrix

Multiple Solutions:
• Sometimes more than one optimal alignment

exists
• In such cases, there are several optimal

alignment paths on the matrix

Heuristic Vs. Rigorous

Heuristic algorithms are less sensitive
– Both FastA and BLAST are approximations of Smith-

Waterman algorithm. Hence, both perform heuristic
filtering of the database.

– Distantly related sequences (e.g. - containing many
substitutions and gaps) are less likely to be discovered
with heuristic applications

Rigorous algorithms are computationally intensive
– Smith-Waterman finds similarities in a rigorous way (e.g. -

calculates the accumulating score for every cell in the
matrix). Hence, it runs 100-1000 slower than FastA and
BLAST.

– Hardware accelerators make rigorous algorithms practical.

Comparison of programs

• SW, BLAST and Blat: local alignments
• FASTA: global alignments

BLAST can report more than one segment of HSP
per database entry

FASTA reports only one segment (match) for each
database entry.

• Speed (not accelerated):
• Blat >> BLAST > FASTA >> SW
• Sensitivity: SW > FASTA > BLAST > Blat

Tips for DB searches
• Use latest database version

• Run Blast first, then depending on your results
run a finer tool (fasta, SW, etc…)

• Where possible use translated sequence. It’s
better to use proteins then DNA.

• E() < 0.05 is statistically significant, usually
biologically interesting. Check also 0.05 < E()
<10 because you might find interesting hits.

Tips for DB searches

• Pay attention to abnormal composition of the
query sequence, it usually causes biased
scoring.

• If the query sequence has repeated segments,
or low complexity segments, remove them or
mask them before running your search.

Tips for DB searches

• Where should I do my search? Local or Network?

Generally, we use network, except for special cases:

If you want to change parameters that the web
version doesn’t allow

If you have patent issues, and don’t want to run on a
public server

• Second, local databases are (almost) always
available, where network databases may not be
(communication problems, blocking IPs, system
overload)

