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Main Topics
RNA-Seq transcript level analysis

 RNA-Seq alignment based pipelines

 From reads to assembling transcripts, 

quantification and detecting differentially 

expressed transcripts

 RNA-Seq alignment free quantification 
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Alternative Splicing
 Alternative splicing occurs as a normal 

phenomenon in eukaryotes, where it greatly 
increases the biodiversity of proteins that 
can be encoded by the genome.

 In humans, ~95% of multi-exonic genes are 
alternatively spliced.
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Why Transcript Level Analysis?

Li HD, Menon R, Omenn GS, Guan Y. (2014) The emerging era of genomic data 
integration for analyzing splice isoform function. Trends Genet

In human
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Example – Alternative Splicing

Fibronectin (FN1) was 
one of the first genes 
for which alternative 
splicing was described 
and its mechanism 
studied. 

The figure illustrates 
the retention or 
exclusion of the 
extradomain-A exon 
(EDA; dashed lines), 
which controls FN1 
tissue localization. 

Nature Reviews Molecular Cell Biology volume 18 (2017)
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From Sequences to Transcriptome
Analysis

No Genome or 
Transcriptome

Transcriptome

Genome

RNA-Seq

Mapping

De novo assembly
Assemble 
transcripts

Alignment free quantification 
of transcripts



-7-

Mapping Reads to the Genome
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Cufflinks Detects Novel and 
Known Transcripts

 “To test Cufflinks, we sequenced and 
analyzed >430 million paired 75-bp 
RNA-Seq reads from a mouse myoblast
cell line over a differentiation time 
series. We detected 13,692 known 
transcripts and 3,724 previously 
unannotated ones, 62% of which are 
supported by independent expression 
data or by homologous genes in other 
species.”
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Overview of Cufflinks

Trapnell et al. Nature Biotechnology 
28, 511–515 (2010)

 Identify pairs of 'incompatible' 
fragments that must have 
originated from distinct spliced 
mRNA isoforms

 Fragments are connected in an 
'overlap graph' when they are 
compatible and their alignments 
overlap in the genome 

 Find minimum number of 
transcripts needed to 'explain' 
all the fragments



-12-

Cufflinks -RABT

 Transcripts that are expressed in low 
level are represented by few reads and 
therefore only partially covered (64%). 

 That means that naive assembly methods 
will fail to construct the majority of the 
transcripts

Roberts et al. Bioinformatics. 
2011 Sep 1;27(17):2325-9.
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RABT: Reference Annotation 
Based Assembler (-g)

Faux reads tiling the transcripts are added to the real 
reads by cufflinks algorithm in the process of assembly
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Gene transfer format (GTF)

GTF file is used to hold information 
about gene structure. It is a tab-
delimited text format
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Estimate Transcripts Abundance

Trapnell et al. Nat Biotechnol. 2010 May;28(5):511-5. 

From which transcript did the purple reads originate? 
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Align to Transcriptome
Quantification Problem

 We encounter the same problem when we align 
directly to a transcriptome 

 Counting the number of sequences that map 
uniquely to transcripts results in false 
estimates of alternatively spliced transcripts

 Computational challenge: How to use reads 
that map ambiguously between isoforms and 
genes 

 Solution: EM algorithm

Human p53 locus 
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Isoform Expression Quantification
Expectation Maximization Algorithm 

Computing relative abundance of transcripts:

 Step 1- Assume isoforms are equally 
abundant (in case of 2 transcripts 
abundance is:  ½ and ½)

 Step 2 - Distribute the reads to the 
isoforms based on the abundance

 Step 3 - Recalculate the isoforms
abundance based on the reads counts and 
isoforms length

 Step 4- If abundance has changed go back 
to step 2 otherwise stop
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Calculating Abundance after 1st

EM Cycle

The red transcript relative abundance (proportion)  after the first 
cycle: 

p red = 18/400 / (12/300 + 18/400) = 0.53
p blue = 12/300 / (12/300 + 18/400) = 0.47

Total reads   Length
12 300

18 400

Exon length  (bp)     200   100  100

blueblueredred

redred
red

lengthcountslengthcounts

lengthcounts
p

//

/
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Relative Abundance Calculation 
Using 100 Iterations of EM
starting 

relative 

proportion 

(p)

read 

counts

New 

proportion 

 after 

iteration 

(p)

starting 

relative 

proportion 

(p)

read 

counts

New 

proportion 

 after 

iteration 

(p)

Iteration #

Blue 0.5 12 0.470588 Red 0.5 18 0.529412 1

11.29412 0.445993 18.70588 0.554007 2

10.70383 0.425161 19.29617 0.574839 3

10.20386 0.407324 19.79614 0.592676 4

9.775778 0.39191 20.22422 0.60809 5

9.405837 0.378482 20.59416 0.621518 6

9.083574 0.366704 20.91643 0.633296 7

8.800885 0.356308 21.19911 0.643692 8

8.551391 0.347084 21.44861 0.652916 9

8.330004 0.338859 21.67 0.661141 10

6.00743 0.25029 23.99257 0.74971 94

6.006965 0.250272 23.99303 0.749728 95

6.006529 0.250255 23.99347 0.749745 96

6.006121 0.250239 23.99388 0.749761 97

6.005738 0.250224 23.99426 0.749776 98

6.005379 0.25021 23.99462 0.74979 99

6.005042 0.2502 23.99496 0.7498 100

Blue 0.25 Red 0.75
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Normalized Expression Values

Normalize :

 Between samples accounting for number of reads

 Between genes/transcripts accounting for different 
length

Fragments (Reads) Per Kilobase of exon per Million mapped 
fragments Nat Methods. 2008,  Mapping and quantifying mammalian transcriptomes
by RNA-Seq. Mortazavi A et al.

C= The number of fragments mapped onto the transcript exons
N= Total number of  (mapped) fragments in the experiment
L=  The length of the transcript (sum of exons) 

Problem the sum of FPKM for different samples is not necessarily 
the same 

NLi

Ci
FPKMi  36 1010
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TPM (Transcripts per million)

 Divide the fragment counts by the length 
of each transcript in kilobases. This gives 
you fragments per kilobase (FPK).

 Count up all the FPK values in a sample and 
divide this number by 1,000,000. This is 
your “per million” scaling factor.

 Divide the FPK values by the “per million” 
scaling factor. This gives you TPM.

TPM sum in all samples is a million, better 
way to normalize. 
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Metrics for quantifying gene 
expression levels

 RPKM
 Reads Per Kilobase per Million mapped reads

 Normalize relative to sequencing depth and gene length

 FPKM
 Similar to RPKM but count DNA fragments instead of reads

 Used in paired end RNA-Seq experiments to avoid bias

 TPM
 Transcripts Per Million

 Normalize for transcript length, then normalize by 
sequencing depth

http://diytranscriptomics.com/Reading/files/wagnerTPM.pdf
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Determining Differentially 
Expressed Genes and Transcripts

http://www.molgen.mpg.de/1242892/rnaseq.pdf

The statistical model 
for finding differential 
expressed transcripts 
or genes depends on 
whether we have 
biological replicates. 
The advantage of 
having many replicates 
allows to learn about 
the biological variation 
within the conditions 
tested.

Discover transcripts showing different average 
expression levels across two groups
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Negative Binomial Distribution

Expected by 
Poisson

Negative 
binomial 
distribution

 Cuffdiff tests for 
differential expression by 
the use of negative 
binomial generalized linear 
models
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Cuffdiff

TPM

Genes expression is calculated as the sum of its 
isoform expression levels
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RNA-Seq analysis on the 
transcript level

 Per sample map Reads to a Genome (using known 
annotation)  (TopHat2)

 Per sample assemble transcripts (Cufflinks)

 Merge  assembled transcripts built for the 
various samples into one “combined 
transcripts.gtf” (Cuffmerge)

 Per sample quantify merged pool of transcripts 
(Cuffdiff)

 Normalize counts (Cuffdiff)

 Detect differentially expressed transcripts 
(Cuffdiff)
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What is the Advantage of Longer and 
PE Reads?

 Reads mapping to junctions
 With longer reads we will have more reads 

spanning exons

 Paired end reads
Knowing both ends of a fragment and an approximation 

of fragment size we can better determine the 
transcript from which it was derived.  
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Experimental Design 
Mammalian tissue

Liu Y. et al., 2014; ENCODE 2011 RNA-Seq

Differential gene 
expression 
profiling

10-25M 50 base single-end

Alternative 
splicing

50-100M
100 base paired-
end

Allele specific 
expression

50-100M
100 base paired-
end

De novo assembly >100M
100 base paired-
end
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Example of transcript calls and expression-level estimates

No method achieved even 60% accuracy for transcript 
reconstruction in human

Results were evaluated from methods based on genome 
alignments (Augustus, Cufflinks, Exonerate, GSTRUCT, 
iReckon, mGene, mTim, NextGeneid, SLIDE, Transomics, 
Trembly and Tromer) as well as de novo assembly 
(Oases and Velvet).
Programs were run without genome annotation, aside from 
iReckon and SLIDE
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• Faster
• More complete and accurate reconstructions and 

better estimates of expression levels
• Implements the maximum flow algorithm
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Stringtie Algorithm Steps:
1. Pre-assembles paired 

reads – super reads
2. Uses mapping of reads 

to the reference 
genome to build an 
alternative overlap 
graph

3. The path with the 
heaviest coverage is 
used to build a 
transcript 

4. The assembly of 
transcripts and 
estimation of 
expression level is done 
simultaneously

5. The assembled 
transcript is removed 
from the splice graph 
and step 3-4 repeated 
until there is no more 
transcripts
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Steven Salzberg - Transcriptome Assembly Computational Challenges of Next Generation Sequence Data

https://www.youtube.com/watch?v=2qGiw4MRK3c
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RNA-Seq analysis on the 
transcript level

 Per sample map reads to a 
Genome (using known annotation)  
(STAR, HISAT)

 Per sample assemble transcripts 
(StringTie)

 Merge  assembled transcripts 
built for the various samples 
into one “database” (StringTie)

 Per sample quantify merged 
pool of transcripts (StringTie)

 Normalize counts (Ballgown)

 Detect differentially expressed 
transcripts (Ballgown)
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Main Topics
RNA-Seq transcript level analysis

 RNA-Seq alignment based pipelines

 From reads to assembling transcripts, 

quantification and detecting differentially 

expressed transcripts

 RNA-Seq alignment free quantification 
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Four Basic Strategies for Transcript Analysis from 
RNA-Seq Data

Modified Genome Biology 2016 17:13

Alignment Free

Reads

Pseudo Align 

Counting

Alignment Based
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Alignment Free Quantification
 Kallisto: Bray, N.L., Pimentel, H. Melsted, P. & Lior Pachter

(2016) Near-optimal probabilistic RNA-seq quantification 
Nature Biotechnology 34, 525–527

 Salmon : Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & 
Kingsford, C. (2017). Salmon provides fast and bias-aware 
quantification of transcript expression. Nature Methods.
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Pseudo Alignment – for 
quantification purposes

 Identifying the transcripts from which the 
reads/fragments could have originated

 Does not try to pinpoint exactly how the 
sequences of the reads and transcripts 
align

 Pseudo alignment uses kmers –short 
sequences Example
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Kallisto Method

Nature Biotechnology volume34, 525–527 (2016)

The input :
• reference transcriptome 
• reads from an RNA-seq experiment
Method: 

(a) An example of a read (in black) and three 
overlapping transcripts with exonic regions as 
shown. 

(b) Construct a de-Bruijn graph from the 
transcriptome (T-DBG), where nodes (v1, v2, v3, 
... ) are k-mers, each transcript corresponds 
to a colored path.

(c) Evaluate k-mers of reads for compatibility 
with t-DBG. 

(d) Can skip redundant k-mers (have the 
same k-compatibility class). 

(e) The k-compatibility class of the read is 
determined by taking the intersection of 
the k-compatibility classes of its 
constituent k-mers.

Each 
node is 
a kmer
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Kallisto

 Kallisto pseudoaligns reads to a 
reference, producing a list of transcripts 
that are compatible with each read while 
avoiding alignment of individual bases

 EM algorithm deconvolutes
pseudoalignments to obtain transcript 
abundance

 Advantage : fast 
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Performance of Kallisto and other methods

Nature Biotechnology volume34, 525–527 (2016)

Kallisto can quantify 30 million human reads in less than 3 
minutes on a Mac desktop computer

Relative difference is 
defined as the absolute 
difference between 
the estimated 
abundance and the 
ground truth divided by 
the average of the two.
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Summary

Alignment Based 
(STAR)

Alignment Free 
(Kallisto, 
Salmon) 

Differentially 
Expressed Genes  

/Transcripts 
(Sleuth)

Quantification

Genes

Quantification

Transcripts 
Genes

Differentially 
Expressed Genes 

(DESeq2)

Assemble
New 

Transcripts
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Figure 1 RNA-seq bioinformatics pipeline. Schematic of the RNA-

seq bioinformatics methodology. 
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Figure 2 RNA-seq reported methodology is incomplete. Distribution 

of software and reference usage for the six ...
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Exercise 7

 We will use genome browser IGV to 
analyse assembled transcript outputs & 
explore the differences between short 
and long reads

THANKS

Questions???


