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RNA-Seq Potential

RNA-Seq: developed a decade ago has become an 
indispensable tool for transcriptome analysis

In theory RNA-Seq can be used to build a complete 
map of the transcriptome across all cell types, 
perturbations and states (Trapnell C. et al, Nature methods 
6 469-477(2011))



RNA-Seq Applications

 Transcript level analysis : 

 Discover novel transcripts

 Determine transcript structure,

 Measure transcripts expression

 Detect differentially expressed transcripts/isoforms 

between conditions, treatments…

 Gene expression analysis for Model Organism:

 Measure gene expression 

 Detect differentially expressed genes between 

conditions, treatments… based on known gene structures



RNA-Seq Workflow

Condition 1
(normal colon)

Condition 2
(colon tumor)

Isolate RNAs

Sequence ends

Million/billions of fragments 
are sequenced

Converted to amplified  
small cDNA fragments  with  

linkers at the endsSamples of interest

Assemble or map 
to genome or to a 

transcriptome

Quantify and detect 
differential expression

Modified - www.med.nyu.edu/rcr/rcr/course/RNA-seq.pptx



High Throughput Genomics

DNA Microarrays

Illumina 
NovaSeq

NextSeq500
…



Microarrays vs RNA-Seq

 Both high throughput 
methods can profile the 
genes with similar 
performance

 Microarrays suffer from 
compression (saturation) 
at the high end

 Low expression is 
problematic in both 
platforms

Malone et al. BMC Biol. 2011; 9: 34.
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Microarray & RNA-Seq
Pros and Cons

Microarrays RNA-Seq
Gene model 
organism/Transcript 
and de novo assembly

Cost $-$$ $/$$$

Biases Decade of research 
and solutions

Understanding is 
evolving

Data sizes Mb -images Gb- sequence data

Dynamic range 102 105

Transcript discovery , 
isoform identification

&  Transcript-chimeras

No No/Yes

Genome required Yes Yes/No

Allele specific 
expression

No No/Yes
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mRNA in the RNA “World”

 Most abundant RNA is 
rRNA – 98%

 Illumina standard protocol 
enriches for mRNA by: 
 oligo(dT)-based affinity 

matrices

 Sequence: rRNA capture 
beads (Ribo-Zero)



Sequencing Options

Illumina NextSeq/NovaSeq Sequencing options:

 Length of sequence (up to 300 bases)

 Paired-end (PE) or single-end (SE)
Both PE  and longer length sequencing increase the 

sensitivity and specificity of the detection of the 
alternative splicing and novel transcripts

PE 50

PE 100

SE 50

SE 100

DNA 
FRAGMENT



Experimental Design 
Mammalian tissue

Liu Y. et al., 2014; ENCODE 2011 RNA-Seq

Differential  
gene 
expression 
profiling

10-25M
50 base 
single-end

Alternative 
splicing

50-100M
100 base 
paired-end

Allele specific 
expression

50-100M
100 base 
paired-end

De novo 
assembly

>100M
100 base 
paired-end

(5M Bulk 
MARS-Seq) 



Biological Replicates
 Usually our goal in a RNA-Seq experiment is to detect 

Differentially Expressed Genes (DEGs)  between groups. 

 Each group contains several samples, which are also known 
as replicates

 Assessing biological variation requires biological 
replicates - (3) are a minimum, yet more are 
recommended  



ENCODE consortium’s Standards, Guidelines and Best 
Practices for RNA-Seq



Proper Experimental Design

Batch 1

Batch 2

MutantControl

• It is impossible to partition biological variation from 
technical variation, when these two sources of variation 
are confounded.

• No amount of statistical sophistication can separate 
confounded factors after data have been collected.



Batch Effects
 Avoid batch effects  -

Technical sources of variation that have been added to samples during 
processing,  such as extracting RNA with different kits or sequencing on 
different flowcells or lanes. 

This 
design 
avoids 
the lane 
batch 
effect

Auer and Doerge GENETICS June 1, 2010 vol. 185 no. 2



https://doi.org/10.1073/pnas.1413624111

https://doi.org/10.1073/pnas.1413624111


Figure 1. Study design.

Gilad Y and Mizrahi-Man O. A reanalysis of mouse ENCODE comparative gene 
expression data [version 1]. F1000Research 2015, 4:121 (doi: 
10.12688/f1000research.6536.1)



Summary RNA-Seq Experiment Planning

Sample and 
RNA type 
and quality

Biological Aim
Example: Gene or transcript
level analysis

Library 
protocol

Experimental design 
(#of groups &  replicates) 

Sequencing 
Read length
PE or SE
Number of reads per sample

Bioinformatics 
pipeline and 
tools

We recommend to come to a kick-off meeting with us, to 
help plan your experiment
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Abigail Yu    Nature Methods 10, 1165–1166 (2013)

RNA-Seq is a 
straightforward 
process: you isolate 
RNA, sequence it 
with a high-
throughput 
sequencer, and put 
it all back together. 
What is the 
problem? 



What to do with all this data??

HELP !!!!

I just got sequence data…



Sequence Output Format

 FASTQ

Line 1: Unique ID for a sequencing read
Line 2: Sequences
Line 3:+
Line 4: Base calling quality score (Analogous to Phred scores but 

in ASCII value)

Example:

@HISEQ:126:H14YJADXX:1:1101:1118:2101 1:N:0:ATCACG

CTCCATAGTCAGAAACTTCAGCATGACAGTACCTCATGCTGCATCAGGTGATCATGAAAAGATTACAGGCTTTCTAAAATTATCAGCAAGATATGG

+

@@?ADDDD?ADHDIIIIIIIEIIIGEFHC<?FH4C9E9BGAFIGH<DG9BD?@DGGEGHHG<DCBBCC8C>FHCGEHIGEEE>EEHEEEEC>A>;;



RNA-Seq Workflow

Raw Reads
Preprocessing & 
Quality control 

(cutadapt & FASTQC)



Example of QC report



Pre-processing
 Recommendation is to use the high quality 

sequence data (is critical for de novo assembly), 
pre-processing includes: 

 Trim sequences if: the end is of low quality, 

contain adapter or polyA or polyT

 Filter low quality reads

 Avoid using samples with insufficient number of 

reads



RNA-Seq Workflow

Raw Reads

Preprocessing & 
Quality control 

(cutadapt & 
FASTQC)

Map the reads of 
each sample to the 

genome (STAR)



Mapping Short RNA-Seq Reads

Do I align the reads to the genome or to the 
transcriptome?

Novel discovery



Mapping to Genome
How to align reads that span 

exons?

http://en.wikipedia.org/wiki/RNA-Seq





Newer Aligners – Improving speed



STAR-Spliced Transcripts 
Alignment to a Reference

(a) 
In the first step, the algorithm finds 
the Maximal Exact Match (MMP) starting from 
the first base of the read

Next, the MMP search is repeated for the 
unmapped portion of the read

Speed of search is achieved since the suffix 
array is not compressed and therefore requires 
increased memory usage (30-60Gb)

Last stage is Clustering, stitching and scoring

(b) 
If STAR does not find an exact matching 
sequence for each part of the read due to 
mismatches or indels, the previous MMPs will be 
extended.

(c)
If extension does not give a good alignment, 
then the poor quality or adapter sequence (or 
other contaminating sequence) will be soft 
clipped.



Briefings in Bioinformatics, Volume 15, Issue 2, March 2014, Pages 138–154, https://doi.org/10.1093/bib/bbt081

The content of this slide may be subject to copyright: please see the slide notes for details.

Figure 1: A string (above) and its suffix array (shown vertically) 

along with the position index on the left and the ...

• The speed of the 
search is achieved 
by the suffix tree

• Suppose we want 
to search for gtg,    
they are all 
clustered 
together 

https://doi.org/10.1093/bib/bbt081


Examples of Input and Output

Mapped Reads – bam format

Sequences – fastq

Mapping to genome



Mapping Output - Alignment file
 SAM or binary BAM file



Visualization of Bam outputs in a 
Genome Browser (IGV)

read mapped
to exon

read mapped
to junction



RNA-Seq Workflow

Raw Reads
Preprocessing & Quality 

control (cutadapt
FASTQC)

Map the reads of each 
sample to the genome 

(STAR)

Quantify gene counts 

per sample

(STAR)



Gene Quantification
 A gene is quantified by counting the number of 

fragments/reads  which align uniquely to all its exons. 

 The gene exons are given to the program as a GTF 
file

 We do not need to determine from which transcript 
the read was derived 

Trapnell et al. Nat Biotechnol. 2010 May;28(5):511-5. 



Gene Transfer Format (GTF)

• GTF file is used to capture gene structure 
information. 

• It is a tab-delimited text format



STAR/HTSeq Result
A count matrix 

sample_1 sample_2 sample_3 sample_4

gene_1 15 9 11 18

gene_2 19 21 21 40

gene_3 106 114 153 207

gene_4 569 565 756 992

gene_5 1029 1260 1559 1968

gene_6 5049 10029 7537 200

SUM 10 M 30 M 20 M 10 M

Need to account for the differences in sequence amount 
between the samples



RNA-Seq Workflow

Raw Reads

Preprocessing & 
Quality control 

(cutadapt
FASTQC)

Map the reads of 
each sample to the 

genome (STAR)

Quantify gene 

counts per sample

(STAR)

Detect Differentially 
Expressed Genes : DEG

(DESeq2)



DESeq2 Normalization
median-of-ratios method

 Create a “virtual reference sample” by 
taking, for each gene, the geometric mean 
of counts over all samples

 Normalize each sample to this reference, 
to get one scaling factor (“size factor”) per 
sample.



Example-DESeq Normalization

sample_1 sample_2 sample_3 sample_4 geometric mean ratio sample_1

gene_1 15 9 11 18 12.79 1.17

gene_2 19 21 21 40 24.06 0.79

gene_3 106 114 153 207 139.87 0.76

gene_4 569 565 756 992 700.73 0.81

gene_5 1029 1260 1559 1968 1412.26 0.73

gene_6 5049 5897 7537 10029 6887.68 0.73

Median 0.77

The scaling factor for sample 1 is 0.77



DESeq2 Normalization 
Need to normalize the amount of sequence data 
between the samples

1. Geometric mean is calculated for each gene across 
all samples. 

2. The counts for a gene in each sample is then 
divided by this mean. 

3. The median of these ratios in a sample is the size 
factor for that sample.

4. The counts are divided by the sample-specific size 
factors

This procedure corrects for library size and RNA 
composition bias, which can arise for example when 
only a small number of genes are very highly expressed 
in one experiment condition but not in the other.



Determining Differentially 
Expressed Genes

http://www.molgen.mpg.de/1242892/rnaseq.pdf

• Aim: finding genes  
which have a significant 
difference between the 
groups which is larger 
than the “noise” –
variation within the 
groups

• The advantage of having 
many replicates allows 
us to learn about the 
biological variation 
within the groups tested
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Determining Differentially 
Expressed Genes (DEG)

 Our input are genes counts, i.e. discrete 
values

 In order to determine the DEG genes we 
need to module the data i.e. make 
assumptions on the statistical properties 

 Incorrect assumptions can lead to poor 
false discovery rate (FDR) control and 
inaccurate true positive identification in 
the DEG calls.



RNA-Seq Noise

Suppose we sequence the same library twice 
to the same depth.  For instance sequence it 
on two different lanes?

Which kind of replicates are these ?

Will we get the same gene counts?



RNA-Seq a Sampling Experiment

 A typical RNA library is estimated to have 
2.408 × 1012 different molecules. 

 If we sequence 30 million reads –this 
means 30M molecules are sampled. 

 Our sample represents approximately 
0.0013% of the total number of available 
molecules.

 It is therefore clear that when we sample 
twice we will observe a variance in the gene 
counts



RNA-Seq Noise
 In the case of sequencing the same library 

twice, since we have a large total number of 
reads and only a small fraction of reads mapping 
to each gene, then the observed read counts for 
an individual gene can be well approximated by a 
Poisson distribution.

 Poisson distribution is sometimes called the law 
of small numbers because it is the probability 
distribution of the number of occurrences of an 
event that happens rarely but has very many 
opportunities to happen.



Poisson Distribution

 Assuming the gene counts in a RNA-Seq 
experiment follow a Poisson distribution we 
would expect that the average gene count 
and the variance of the counts are equal.

var = µ 

 https://youtu.be/fxtB8c3u6l8

 https://youtu.be/HK7WKsL3c2w

https://youtu.be/fxtB8c3u6l8
https://youtu.be/HK7WKsL3c2w


Biological Variation

 When we sequence biological replicate 
samples the concentration of a given gene 
will vary around a mean value with a certain 
standard deviation

 This standard deviation needs to be to be 
estimated from the data, in the case of 
RNA-Seq we need to estimate it with a 
limited number of replicates

var = µ + c µ

Poisson noise Biological noise



Negative Binomial

Expected by 
Poisson

Negative 
binomial 
distribution

 In RNA-Seq analysis the 
negative binomial 
distribution is used as an 
alternative to the Poisson 
since it takes into account 
variance that exceeds the 
gene mean 

 The count data is used to 
estimate the variance
Orange line: the fitted 
observed curve for the 
variance



Detecting Differentially 
Expressed Genes

 DESeq2 tests for differential expression by 
the use of negative binomial generalized linear 
models

 The output consists of: 
 Log fold change (treatment/control) 

 p-value - indicates the probability that the 
observed difference between treatment and control 
will be observed even though the there is no true 
treatment effect

 Adjusted p value – multiple test correction 
 In the RNA-Seq study we simultaneously tested all genes



RNA-Seq Workflow

Raw Reads

Preprocessing & 
Quality control 

(cutadapt
FASTQC)

Map the reads of 
each sample to the 

genome (STAR)

Quantify gene 

counts per sample

(STAR)

Detect Differentially 
Expressed Genes : DEG

(DESeq2)
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MARS-Seq

Differences between RNA-Seq and bulk MARS-
Seq:

 Library generated contains only 3’ end of the 
transcripts

 Low input material - UMI  (Unique Molecular 
Identifier)



MARS-Seq – Paired end 
sequencing

 Read 1 (R1) contains 3’ cDNA insert 
sequence

 Read2 (R2) contains the library barcode 
and the UMI sequence

Library Barcode



Library Barcode

http://www.illumina.com/content/dam/illumina-
marketing/documents/products/illumina_sequenci
ng_introduction.pdf

 Multiplexing: the process of pooling samples together 
and sequencing them simultaneously

 Demultiplexing: separating reads using the library 
barcode to identify the origin sample



Illumina Sample Index (barcodes)  

Since the library barcode in the Illumina protocols 
and MARS-Seq protocol is not compatible, these 
libraries should not be pooled together



UMI
 The 8 base UMI is used as an 

identifier of a specific 
transcript molecule

 48 = 65536 theoretical 
possibilities

 Reads are considered PCR 
duplicated, if they map to the 
same gene and have the same 
UMI

 Instead of counting reads we will 
count number of unique UMIs 
per gene

This figure is adapted from Islam et al (2014)

http://www.nature.com/nmeth/journal/v11/n2/full/nmeth.2772.html#ref8


Differences MARS-Seq vs RNA-Seq

MARS-Seq RNA-Seq

Gene coverage 3’ The whole transcript

# READS per sample 5M 20M

Sequencing protocol PE SE or PE

Location of library index R2 Illumina index (i5 & i7) 

Location of UMI barcode R2 NO UMI



Genome Browser View

MAR-Seq

RNA-Seq



Bioinformatics Workflow

Raw Reads

Preprocessing & 
Quality control 

(cutadapt
FASTQC)

Map the reads 
of each sample 
to the genome 

(STAR)

Use UMI (R2)

UMI gene counts 
per sample

(HTSeq)

Detect 
differentially 

expressed genes

(DESeq2)MARS-Seq
RNA-Seq



MARS-Seq Gene Quantification

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html

 HTSeq criteria to 
count reads: uniquely 
mapped to the 3’ of  
gene (using a modified 
annotation file) 



In BAM File Add Feature Tag 
and Mark Duplicates

Mark OK 

Mark AS DUPLICATE 

UMI 
barcode



UMI Count Correction

Actin transcript a

Actin transcript b 
Same UMI 
barcode 
sequence 

UMI

 UMI barcodes are connected to cDNA 
randomly, so it might happen that two 
independent transcripts derived from the same 
gene get assigned the same UMI barcode -> 
clash

 Genes that are highly gene expressed, have a 
higher chance of clashing

 Correction is applied to UMI counts taking into 
account the chance of clashing



Refael Kohen
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The END

THANKS FOR LISTENING

QUESTIONS?



Correction For Barcode Error
Currently Not Implemented in UTAP

Sequencing errors inflate the apparent 
numbers of unique fragments sequenced

https://cgatoxford.wordpress.com/2015
/08/14/unique-molecular-identifiers-
the-problem-the-solution-and-the-
proof/


