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Epigenome
How does the same genome sequence give rise to over 200
different cell types through remarkably consistent
differentiation programs?
Gene regulation and genome function are intimately related to
the physical organization of genomic DNA
Epigenetic modifications are reversible modifications on a cell's
DNA or histones that affect gene expression without altering
the DNA sequence.
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DAMN YOU, EPIGENOME.

www.itsjustabadday.com
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Definition

ChIP-seq is short for

chromatin immuno-precipitation followed
by sequencing

It provides quantitative, genome-wide view
of DNA- protein binding events



ChIP-Seq - Lecture Outline

Experimental issues: how is a ChIP-Seq
experiment done?

Analysis of the sequence data: how to
detect the binding regions?

Downstream analysis: how to extract the
biological relevance?



Aim: Transcription Regulation

Characterize genome wide DNA -protein
interactions in vivo, such as:

TF to promoter or enhancer
RNA polymerase II




ChIP - How is it done?
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Chromatin ImmunoPrecipitation
(ChIP)
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TF/DNA Crosslinking in vivo
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Sonication (~200bp)
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TF-specific Antibody
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Immunoprecipitation
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Reverse Crosslink and DNA
Purification
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ChIP High-throughput technology

Discover the DNA binding regions in the

genomic scale
\
DNA Microarrays Next Generation Sequencing

B

More attractive for
8 where promoter chips
Ml are not sufficient to
study regulation. f
NGS in comparison has af

ChIP-Chip ChIPLSeq



ENCODE Guidelines
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ENCODE

Current ENCODE Experiment Guidelines

Antibody Characterization Guidelines

Antibody Characterization Standards for BENA binding proteins (Movember 2016)
Antibody Characterization Standards for antibodies used in fRIP assays (November 2016)
Antibody Characterization Standards far histone modifications and chromatin-associated proteins (October 2016)

Antibody Characterization Standards far transcription factors (May 2016)

Experiment Guidelines

| ENCODE Experimental Guidelines for ENCODES RNA-seq {Includes long and small RNA-seq, CAGE, RAMPAGE)
[Jauary 2017)

ENCODE Experimental Guidelines for ENCODES Diase-ser (Jaunary 2017)

ENCODE Experimental Guidelines for ENCODES eCLIP (January 2017)

ENCODE Experimental Guidelines for ENCODES ChiP-ser (January 2017)

ENCODE Characterization Guidelines for ChiP-seq using Epitope-tagned Transcription Factors (January 2017)
ENCODE Experimental Guidelines for ENCODES ChIA-PET v2 0 (July 2017)

ENCODE Standards and Guidelines for wiole Genome Shotgun Bisulfite Sequencing (WGES) (July 2015)
ENCODE Experimental Guidelines for ENCODEA HIC v1 0 (January 2018)

For previous versions of experiment and antibody guidelines, click here.

_15-



Experimental Design

ENCODE consortium's Standards,
Guidelines and Best Practices

Genome Res. 2012 Sep;22(9):1813-31. doi:
10.1101/gr.136184 111,

Consult with the person who will
analyse the data before
performing the experiment

Kick-off meeting

16-



Types of ChIP Controls

v’ “Input” DNA before IP

v" “Mock” IP with no antibody

v" IP with Pre-Immune Serum

v" IP with a non-relevant antibody

v" IP with knock out (cells without
the relevant protein)

v" Control should be same cell and
condition as the IP in order to
account for genetic and
epigenetic features

Cresshink Iving colls
Isclate chromatin l
/NN
v N\
Soricate — - -
WA'/,\ SE\ /N
Immuncprecipitate 1 * / ‘//
- O i
) / ‘/ reforence sample
1 Ravarsa crossinks, solata DINA
“treatment”  “control”

Nat Rev Genet. 200’911%(9): 605-616.



Why Do I Need a Control Sample?

Majority of DNA sequenced in a ChIP reaction
is background, the IP is an enrichment method

We will have a lot of biased DNA fragments
that did not bind our protein of interest

" DNA that is more prone to breakage (open-
chromatin regions)

= Specific amplified DNA in the genome we sequence
(but not in the reference genome)

= Artificially high signal in some types of repeat
regions such as satellite, telomeric and centromeric
repeats

= Other technical or sequence bias

Need to have a control! 18-



Other Experimental Design Issues

Use validated antibody maybe even two
different antibodies

Need to have biological replicates

If we have a good reference genome
(mouse, human...) no need to sequence long
reads (>50 bases) and no need in paired-
end sequencing

P 00 C—— —

CSE 50

~19-
How much reads (sequences) per sample?



Coverage Requur'ed Types of Peaks
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Feng e'r al Nature ProTocoIs 7 1728- 1740 (2012)
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ENCODE recommendations:

uniquely aligned read'Sharp Peaks

mammalian cells 10M 15-20M
flies and worms 2M 5-10M



ChIP-Seq - Lecture Outline

Experimental issues: how is a ChIP-seq
experiment done?

Analysis of the sequence data: how to
detect the binding regions?

Downstream analysis: how to extract the
biological relevance?

_21-



From Sequences to Mapped Reads

Mapping million of sequences-
reads:

find their best alignment to
the genome

Instead of sequence we have
coordinates and orientation

Usually exclude sequences
that map to more than one
location on the genome

Sequencing

@HD VN:1.6 S0:coordinate
@s0 SN:chr2 LN:64444167
@PG ID:TopHat VN:2.8.14 CL:/srv/fdna_tools/tophat/tophat -N 3 --read-edit-dist 5 --read-rea
lign-edit-dist 2 -i 50 -I 5888 --max-coverage-intron 5688 -M -o out /data/user446/mapping_tophat/index/chr
20 /data/userd46/mapping_tophat/L6_18_GTGAAA_LB67 R1_661.fastq
HWI-ST1145:74:C101DACXX:7:1102:4284:73714 16 chr2e 198930 3 1eaMm * ] (2
CCOTGTTTAAAGGTGGATGCGGTCACCTTCCCAGCTAGGCTTAGGGATTCTTAGTTGGCCTAGGAAATCCAGCTAGTCCTGTCTCTCAGTCCCCCCTCT
C BBDCCDDCCDDDDCDDDDDDCDCCCDBC?DDDDDDDDDDDDDDDCCDCDDDDDDDDDDCCCCEDDDC?DDDDDDDDDDDDDDDDDDDDDBDHFFFFDCEE
AS:i:-15 MM:i:3 X0:1:0 XG:i:@ MD:Z:55C28C13A9 NM:i:3 NH:i:2 (C:Z:= (P:i:55352714 HI:i:@
HWI-ST1145:74:C161DACXX:7:1114:2759:41961 16 chr2é 193953 56 166M * [:] [}
TGCTGGATCATCTGGTTAGTGGCTTCTGACTCAGAGGACCTTCGTCCCCTGG6GCAGTGGACCTTCCAGTGATTCCCCTGACATAAGGGGCATGGACGA
G DCDDDDEDDDDDDDCDDDDDDDCCCDDDCDDDDDEEC>DFFFE]]]]]16]IIIIHGBHHGIT]]]11IG]]I1111IIIHIII] I JHHHHHFFFFFCCC
AS:i:-16 MM:i:3 X0:1:0 XG6:i:0 MD:7:68616T18T3 NM:i:3 NH:i:1
HWI-ST1145:74:C181DACKX:7:1264:14760: 4030 16 chr2é 270877 56 106M * ] ]
GGCTTTATTGGTARAAAAGGAATAGCAGATTTAATCAGARATTCCCACCTGGCCCAGCAGCACCAACCAGAARGAAGGGAAGAAGACAGGAAAAAACCA
C DDDDDDDDDCCDDDDDDDDDDEEEEEEEFFFEFFEGHHHHFGD]IIHI J1IIIITTIIGGFIIIHIIII1]3]IIIGHHFAHGFHIHFGGHFFFDDEBB
As:i:-11 MM:i:2 X0:1:0 XG:i:0 MD:Z:0AB5G13 NM:i:2 NH:i:1
HWI-ST1145:74:C101DACXX:7:1216:11167: 8699 ] chr2e 271218 50 56M4706NS6M ¥ (2]

| Alignment |

Mapped Reads - bam




Bioinformatics Challenge-
Detecting the Binding Regions

View mapped reads in a genome browser

Chr1: 159459500 | 159460000 l} 159460500 | 159461000 |
FOXAG-binding FOXA3-binding sequence
soquence S Ay o N A U ), R P I SR R S R R S R
s wita_ "By "l "2 [ C) < H Y imo = SR TR s ;::
E - -
Application note Nature Methods 6, (2009) ChIP seq on DNA ol -
binding TF s -
—

read densities
on +/- strand

http://www.biologie.ens.fr/~mthomas/other/chip-seq-training/booklet/booklet_chip-seq.pdf



ChIP-Seq
Bimodal distribution

~w Crosslink

» Fragmentation
- Positive-strand tag
B Negative-strand tag

110.500.100 110,500,200 110,500,300
Position on chromosome 1

Kharchenko at al. Nature Biotechnology 26, 1351 - 1359 (2008)
_24.



Bioinformatics Challenge-
Detecting the Binding Regions

Method Open Access
Model-based Analysis of ChIP-Seq (MACS)

Yong Zhang®*, Tao Liu®", Clifford A Mevyer”, Jérome Eeckhoute’,
David S Johnson®, Bradley E Bernstein’¥, Chad Nussbaum,
Richard M Myers¥, Myles Brown’, Wei Li* and X Shirley Liu”

Addresses: "Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Health, 44
Binney Street, Boston, MA 02115, USA. "Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer
Institute and Department of Medicine, Bricham and Women's Hospital and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA.
"Fene Security Wetwork, Inc., 2686 Middlefield Road, Redwood City, CA 94063, USA, Molecular Pathology Unit and Center for Cancer
ERessarch, Maszzachusetts General Hospital and Department of Pathology, Harvard Medical School, 13th Street, Charlestown, MA o212q, USA,
1Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridse, A, ozi4z, USA, YDepartment of Genetics, Stanford University Medical
Center, Stanford, CA 94305, USA. *Division of Biostatistics, Dan L Duncan Cancer Center, Department of Molecalar and Cellular Biology,
Baylor College of Medicine, Cne Baylor Plaza, Houston, TX 77030, USA,
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MACS
Building peak model

" Uses " high-quality' peaks
to estimate fragment
width d

= Searches for highly
significant enriched

regions (above a certain
fold)

" Separates +/- reads and
detects the distance
between the +/- read
distribution

" Shifts all reads d/2
towards the 3' end

Peak Model

200

Distance to the middle

_26-




MACS2- Paired end reads

If the sequencing was paired end,
MACS2 will use the actual insert sizes of

pairs of reads (properly paired) to build
fragment

end-1 <«— HWI-EAS-249 38:7:1:7:1166/1

Chr3 40 1 15902374 15902413 C 40 100 40
end-2 <+— HWI-EAS-249 38:7:1:7:1166/2

Chr3 1 40 15902154 15902193 F 40 100 40

_27-



How to Assess If a Peak is
Significant?

I ™ Peak region

Enrichment relative
to background

Tag count

Position (bp)

_28-



Poisson distribution

MACS models the reads distribution along
the genome by a Poisson distribution

The Poisson distribution is a discrete
probability distribution that expresses the
probability of a number of events
occurring in a fixed area, if these events
occur with a known average rate

and independently. (wikipedia)

_29-



Poisson Distribution

The Poisson distribution is sometimes
called the law of small numbers because
it is the probability distribution of the
number of occurrences of an event that
happens rarely but has very many
opportunities to happen.

-30-



Peak Detection

MACS models the reads distribution along
the genome by a Poisson distribution
" We are counting reads in a fixed region

" We can compute the expected (mean) number
of events, i.e. number of reads in a specified
region:

‘s = Total read counts / effective genome size

" The expectation is a small number

" We have many reads

In this model Ay is also the variance of
the distribution
_31-



Poisson Distribution Probability
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http://en.wikipedia.org/wiki/Poisson_distribution
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ChIP-Seq show local biases in the genome
Chromatin and sequencing bias

500
I

300
I

100

Control tag number (normalized) / 10kb

I I I I I I
0 200 400 600 800 1000

FoxA1 ChIP-Seq tag number / 10kb
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SERGS Peak Calls

The expected number of reads is

" Agg = total read counts / effective genome size

Since ChIP-Seq data show local biases in the
genome, a local expected value is calculated
for each peak!

Dynamic Ajocq = max(Ags, [Actn, A1k, Ask. Miok)

ChIP
Control
— 1kb
— 5kb
\_ _/  10kb

N
MACS: Zhang et al, Genome Biol 2008 _34.



Redundant Reads - Tags

Typical ChIP-seq peak

=3

_— -
Low-complexity ChiP-seq peak

Over amplification of ChIP-DNA by PCR may cause
the same original DNA fragment to be sequenced
repeatedly

MACS removes the redundant reads i.e. reads at the
exact same genome location and the same strand if
their number exceeds the expected redundancy.

Expected is based on the genome size and the number
of reads.

ENCODE guidelines- 10M uniquely mapped_reads
should have non-redundant frequency >=0.8



Control

/ Treatment_/
y- ¢ ~ y

( Remove redundancy )J ( Remove redundancy )1
— - "

y

Select 1,000 regions with a
10- to 30-fold enrichment relative
to the genome background

Build model and estimate
DNA fragment size d

Shift reads toward 3" end by d

Scale two libraries

( Call candidate peaks relative to genome background ))

: )

Calculate dynamic A for candidate peaks

Nature Protocols 7, 1728-1740 (2012)

Calculate P value and filter candidate peaks

_36-

( Calculate FDR by exchanging treatment and control ')



MACS Peak Information (.xls)

Summit

peak summit position related to the start position of peak region,

Tags

number of tags-reads in peak region

-10*log,o(pvalue)

a PHRED like quality score for the peak region e.g. this value would

be 100 for a p-value of 1e-10

Fold enrichment
= for this region against random Poisson distribution with local A

chr start end length | summit [tags |-10LOG,, Fold |FDR
*(pvalue) | enrich | (%)
ment
chrl | 4838075 | 4838758 684 278 68 459.98 | 4253| 0.84




MACS: Shifted Wiggle Files

Shifted reads displayed as a Wiggle format example
coverage signal

variableStep chrom=chrl

Chr base number 12 3 4 5 6 7 8 9 1011 12 13 14 15 186

Mapped reads

O©CoO~NOUITA, WNPE

Coveragesignal o 2 3 5 6 6 6 6 6 6 6 6 4 3 1 0

P WPrOOOOOOO O OUIWNO

38



Peak Counts Depend on Sequencing Depth
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Biological Replicates ENCODE

Biological replicates are required for each
dataset

Criteria to decide that the biological
replicates are in agreement- Irreproducible
discovery rate (IDR)

Reads from replicates which meet these
criteria are usually combined and the data
rescored.

If requirement is not meet a third replicate
is required.

_40-



Biological Replicates Evaluation

https://hbctraining.github.io/Intro-to-ChIPseq/lessons/09_handling-
replicates-idr.html

1. Evaluate peak consistency between true replicates
2. Evaluate peak consistency between pooled pseudo-replicates
3. Evaluate self-consistency for each individual replicate

Rep1-self.
pseudoRep1 no. of Rep1 self-
Rep1 consistent peaks
Rep1-self. (N1)
pseudoRep2
pooled.
pseudoRep1
no. of peaks
consistent between no. of peaks consistent
pooled pseudoreps Pool between true replicates
Nt
(Np) pooled. (Nt)
pseudoRep2
Rep2-self.
pseudoRep1 no. of Rep2 self-
Rep2 consistent peaks
Rep2-self. (N2)
pseudoRep2

For each replicate

check support from QC measures
* NSC, RSC

* FRIP

* NRF, sequencing Depth

* Read quality

This figure is taken from the ENCODE ChIP-seq Guidelines.



How to Run MACS

As a command line program (on a
Linux server - exercise)

Web portals such as:

" GALAXY (public)

= CISTROME (public)

Disadvantage - They require you
to load the mapped reads takes a

LONG TIME: Usually do not run
the latest version of MACS.

UTAP

Tools 2

FASTA manipulation
Filter and Sort

Join, Subtract and Group
Extract Features
Fetch Sequences
Fetch Alignments

Motif Tools

NGS: Mapping

NGS: SAM Tools

NGS: GATK Tools (beta)
NGS: Peak Calling

SICER Statistical approach
for the Identification of ChIP-

Enriched Regions

MACS Model-based Analysis
of ChIP-Seq

NGS: RNA-seq

NGS: Picard (beta)

NGS: Variant Analysis

— 4 snpEff

BEDTools
EMBOSS



Public
Tools for
ChIP-Seq
Analysis

& 2009 Nature America, inc. All rights reserved.

| REVIEW

Table 1 | Publicly available ChIP-seq software packages discussad in this review

Artifact
filtering:
User inpart: strand-based/
Profile Peak criteris®  Tagshift  Comtroldsta®  Ramkby  FDEF B 3 duplicate®  Refs.
[(sbenome  Sirand-specific 1: Mumber of reads  Average (Conditional Nemberof 1z Megative Target FDR, Yes / Yes 10
w11 window scan in window for bighest  binomvial esed v reads under  binomial opticnal window
2: Humber of manking peak  estimate FOR peak 2 conditional  width, window
(ChiP reads minus  pairs binomial inkenval
coninol mads in
window
ERANGE Tag 1: Height cutoff  High quality  Lksed o @loulate P valie 1: Nome: Optional peak Yes fNo 4,18
Wil aggregation  Wigh quality peak  peak estimate, fold enrichment #: § comtrol height, ratio to
estimate, per- [per-region and optonally & ChIP background
region estimaie,  estimaie or  Poalees
or impt inpet
Mggegation  Height threshold  Imputor HA Memberof  1: Monke Caslo  Minimum peak Yees / Yes 1%
FindPeal=  of overapped estimated reads under  simelation height, subpeak
w1192  ftags peak 2 NA valley depth
Fseq Kemel density s s.d. abowe KDE  Imputor KDE for local Feak height  1: Nome: Threshold =.d. Mo / No 14
w1.B2 estimation for 1: mndom estimated background 2: Nome: vale, KIE
{EDE} bacinroend, 2: bandwidth
control
GLITR Mogregation  (assification Userinput tag Multiply sampled  Peak height 20 8 contral Tanget FOR, Mo / No 17
of gverdapped by height exbengion o estimate: and fold § ChIP number nearest
tags and relative baciground dass  enrichment neighbors for
ensichment walues dlustering
MACS Tags shifted  Local region Estimate from  Used for Foisson P valee 1: Nome: P-valwe threshold, Mo j Ves 13
w115 then window  Poimson Pvalse  bigh quality it when available 2 B comtnol tag length, mfold
PealSey  Exiended tag  Local region Input tag Used for q valme 1: Poizson Tanget FOR Mo / No 5
aggregation  binomdal Palue  extension significance of backgnoand
with binomial 2: From
dhistribastion binomial for
sample plus
control
TuEsT Kemel density  2: Height Mode of local  KDE for q valme 1: NA EDE bandwidth, Yes [/ Yo 9
w2l estimation theeshold, shifts that  ensichment and 2§ comtral peak height,
hacigroend mtio  maximize empirical FOR & ChiIP subpeak valley
strand ooes-  estimation 25 a function of  depth, =tio to
comelation profile threshold  background
SICER Window scan  Palue from Inpert Lineary rescaled g valee 1: None: Window length, Mo / Ves 15
w1.02 with gaps random for candiidate peak 2: From Poisson gap sz, FDR
allowed background rejection and P Fralues (with control) or
model, enrfichment walues E-valus
relatiee to condrol (no control)
Si55Rs Window scan N, - N_ sign Mverage Uszed to compute P valme 1: Poizson 1: R Yes Ve 1
wlg change, N, = mearest paired  fold-enrichment: 2: comirol L2N=N
N_ threshold in tag distance  dishriletion diistribertion thneshold
mgion®
=pp Skrand specific Poimson Pvalse  Madmal Sublracted before P valme 1: Monke Carlp  Rakio i Yes f No 12
w0 window scan  ([paived peaks strand ooes-  peak calling simalation badeground
cnlly]) conrelation 2: § comtral
“FIRIF
ey Window scan  Binomial P valee  Estimated or  Sublracied before g valme 1, Z: binomial Tanget FOR No / Ves 20
w2 wser specified  peak calling 2§ contral
& ChIP
Mk ks 1: and 2= rcbe b oe-aampls and bwo- wampl erperi ively. FThess Sescriptizns arn intsrd| Lo g @ magh ides of how costrol duts iu e by the sobtwuse NI momn that
canired deta are ot hasdied. Tescription of hew FIR w or opto nally sy b “Hon' indicates an FIR i not compurted, bt the exporimestal dots may otil be srubypred; WA indicate the

exparimestal wbag {1 sample 21 7] ia ok yet harled by the twhware. § castral | § ChlF, romsber of peaks called with corvtss] (or same portias thevest) and nmple reseraed. $The bty of ‘user input
pararacteny for gach progrars e st et but rther cormprise o mabud of gresten imtevert 4o new e, "Smed- b artifiact Fbering rejecn pedk F the airsd spechic fivrbution of mads
et casbare 2 xpe Suie, o epl by e et i o g e o e tomd t the e in. o regicn. Deplicats’ Rbiring rebors 1 e sl of i thet. ccme s cxcers
of axpeciation st & lscation or Fibering of called prak to ebevinute: thae das b low complexiy resd pilmsps that ey be mncisted with, for sumpls, micrssstsllie DA 1N, ared B are the mambers of
pesitivn and megative strard reads, wapectively.

526 | VOL.6 B0.11s | NOVEMEER 2009 | NATURE METHODS SUPPLEMENT



Comparing Peaks
Is the binding to WT higher than to KO?

e el e, -

WT1
WT2
KO1
KO2

. _‘_.—.L.u‘ P

Il

T WYY S

DiffBind: Differential
binding analysis of
ChIPSeq peak data
Extract fragment
counts for all peaks in
all samples and
perform a statistical

test, such as DESeq?2
_44.

Venn Diagram using
peaks regions




ChIP-Seq - Lecture Outline

" Experimental issues: how is a ChIP-seq
experiment done?

" Analysis of the sequence data: how to
detect the binding regions?

" Downstream analysis: how to extract the
biological relevance?

_45-



oading to a Genome Browser

| EEE | 1
Tcale S kb}| |
chira 13857a088| 138575088|
MACE Feaks
beaks
35 Thifted Merged MACT tag counts for ewerd 18 bp

control

treat

K-HIZ

ull. - . o= T R =

Fhifted Merged MACE Tag counts for every 18 bp

) mambid ealih  ambdlR

MACE Feaks
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TF Motifs Tools

Suppose I have the list of enriched genomic
regions, what next?

Find the TF binding motifs enriched in
comparison tfo genomic background

Predict the TF motif ]
Recommended portals:

MEME-ChIP (public) nACC { ﬂ ¥ CCAA
: I JLCITLIC_TJE?QEQT&TEE
Homer - command line o RATEC A T AT ACTA L

bits




CEAS: Enrichment of Genome Features

Chromosome

X 19 18 17 16 5 14 13 12 11 10 @ 8

¥

Chromosomal Distribution of ChIP Regions
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http://cistrome.dfci.harvard.edu/ap/

fraction of binding data

Functional Interpretation

Which processes and functions does our TF
regulate?
" Associate peaks with genes

" Associating only proximal genomic regions to
genes (<5 kb) - for most TF ignores a large

— ——

SAF (H: Jurkat) NRSF (H: Jurkat) GABP (H: Jurkat) Stat3 (M: ESC)

‘ + —- ——
p300 (M: ESC)  p300 (M: limb) p300 (M: forebrain) p300 (M: midbrain)

0.7 1
0.6

0.5 1
0.4 1
0.3 1

0.2 1

Fraction of all elements

0.1

0

0-2 2-5 5-50 50-500 =500
Distance to nearest transcription start site (kb)

Nature Biotechnology 28 ,
495-501 (2010)
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Functional Interpretation

Some genes are found in “"gene deserts” and
therefore the regulatory genomic region we

can assign to them is large (<1Mb)

2 Mol |
gaa| 2oececs| 2Seeeen|l Seoecee|  SSeeeca] 4oe0668|  4Se60e0| Seooooa|
= Bazed on Eetsedq, UniFrot, GenBank, CCODE and Comparative Genomics
T1 IR4 | IR%2 | BCES5619 BECHS4550 KIAAED47 |l
TiH IRx4 IR%2 | LOCE4 8 654
SOHA CSOFFSE | LOCE4 8 654
ZOHA CEOF 55 Ak 94452
MREFLSE | CEI — ADAMTS16
MOUFSE || CEI ADAMTS 16
CEI AOAMTE16 HIHH
KIAAR2E2S
]
QESD
SOHA
IEELE
IEELE
IEELE
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In Which Processes and Functions
is Our TF Involved?

Associating Peaks-Genes-Ontology
Ontology term 1: genel,gene2,gene3 ..
Ontology term 2: gene2,gene5,gene8 ...

Are my peaks located near genes
enriched for certain ontology terms?

Which statistical test should we apply?
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GREAT improves functional interpretation of cis-regulatory
regions

CoryY McLean, Dawve Bristor, Michael Hiller, Shoa L Clarke, Bruce T Schaar, Craig B Lowe, Aaron M
Wenger & Gill Bejerano

Affiliations | Comtributions | Corresponding author

Mature Biotechnofogy 28, 495501 (20100 | doi10.1038mbt 1630
Fublished online 02 May 2010

GREAT's genomic region-based
statistical test

The probability of hitting a term is
calculated as the fraction of the
genome that is associated with that
term
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GREAT ANALYSIS

Global controls

Mouse Phenotype (no terms)

Table controls: | Export v Shown top rows in this table; I W] Set Term annotation count: Min: |1 Max| Inf Set I| ualize this table: % [select ong] v

Hyper  Hyper  Hyper

Binom Binom Binom Binom

Binom Binom
Rank Raw FDR Q-Val Fold Observed Region Set Fold Observed Total Gene Set
P-Value Enrichment Region Hits Enrichment Gene Hits Genes Coverage

decreased heart rate 19 6.4691e-14 | 2.4889%e-11 9.9387 19 19.39% 2 2.1817e-2 10.1569 7 104 5.22%
increased sensitivity to xenobiotic induced 76 | 3.8303e-10 | 3.6841e-8 10.5656 13 13.27% 1 2.9367e-2 10.7788 ¥ a8 5.22%
morbidity/mortality
abnormal xenobiotic induced 104 3.3973e-9 2.387%e-T 8.7957 13 13.27% 4 5.8428e-2 8.3835 7 126 522%
morbidity/mortality
complete preweaning lethality 107 \4.1608e-9 2.8426e-T 86458 13 13.27% 3 4.6184e-2 8.9187 ¥ 124 5.22%
decreased circulating adrenaline level 406 ©.3188e-4 1.6778e-2 15.9885 3 3.06% 5 .3941e-3 50.3010 3 9 2.24%

The test set of 98 genomic regions picked 134 (1%) of all 20,221 gene
Mouse Phenatype has 7,310 terms covering 6.642 (33%) of all 20,221 genes, and 456,354 term - gene associations.
7.310 ontology terms (100%) were tested using an annotation count range of [1, Inf].
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Nature

Biotechnology 28,
495-501 (2010)

Binomial test over genomic regions
Step 1: Infer distal gene regulatory domains

[" Gene transcription start site
= Ontology annotation
(e.q., “actin cytoskeleton”)

Distal regulatory domain
of gene with/without =

r ririr r

=

Step 2: Calculate annotated fraction of genome

0.6 of genome is annotated with =

Step 3: Count genomic regions

associated with the annotation

Y Genomic region

Yy yvyey

5 genomic regions hit annotation =

Step 4: Perform binomial test over genomic regions
n = 6 total genomic regions
p. = 0.6 fraction of genome annotated with =
k_ = 5 genomic regions hit annotation =

P = Prpinom (k=51 n=6, p=0.6)



Gene List Enrichment Test

The hypergeometric test is the standard gene
enrichment test for gene lists (such as
differential gene lists from microarray
expression studies).

The hypergeometric p-value equals the probability
of choosing x from K (red balls- genes with a
certain ontology) when randomly drawing M
genes from the genome with N genes.
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X S
MY\ (N-M \ 5950 PO
] _ x K-z o O o=C
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Binomial vs Hypergeometric

RN

statistical test statistical test
calculated for a set of calculated for a set of
genomic regions genes

GREAT expects 33% of A gene based approach
all input peaks to be would expect 14% of the
associated with genes near peaks to be
'multicellular organismal associated with
development’ ‘multicellular organismal

development’

Why do we have this discrepancy? -56-



GREAT Uses Both the
Hypergeometric and the Binomial Test

Significant by

hypergeometric :

general ferms arising
from genes with large

regulatory domains

8 +

~log(hypergeometric P value)

(o2}
1

BN

N
1

o
L

~log(binomial P value)

Nature Biotechnology
28 ,495-501 (2010)

Significant in both
tests: specific and
accurate -supported by
multiple genes and
binding events

Significant by
binomial test:
many peaks near
few genes



Ontologies Included in GREAT

Currently, GREAT includes
Gene Ontology (6O)

Ontologies covering phenotypes and
human disease

Pathways

Gene expression
Regulatory motifs
Gene families
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ChIP-Seq - Lecture Outline

Experimental issues: how is a ChIP-seq
experiment done?

Analysis of the sequence data: how to
detect the binding regions?

Downstream analysis: how to extract the
biological relevance?
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My Peak
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